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SUMMARY 

A discretization scheme is presented which, unlike the standard higher-order finite differecce and spline 
methods, does not give rise to unphysical solution modes and boundary conditions. Practical application of 
this scheme is achieved via the DCMG algorithm recently developed by the same author, which turns out t o  
be able to find a converged solution of the I,-( Navier-Stokes equations in about the same time for high- 
order as for low-order discretization schemes. Examples are presented for the driven cavity problem to 
explore the accuracy of the new method. Finally, a local analysis is performed of the corner singularities 
which exist in driven cavity flow, and their effect on the overall accuracy of the solutions obtained by 
polynomial interpolation methods is investigated. 
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1. INTRODUCTION 

Whereas in the solution of initial value problems for systems of ordinary differential equations the 
fourth-order Runge-Kutta method is a de facto standard, in boundary value problems approx- 
imation schemes of higher than second order are much less frequently adopted for ordinary, and 
only very seldom for partial, differential equations. For example, several higher-order differencing 
schemes for the Navier-Stokes equations, based on splines and other polynomial interpolations, 
were reviewed by Rubin and Khosla’ in 1977 but met with little fortune in the following years. 

One reason for this lack of success was certainly the loss of performance encountered by the 
numerical solution methods that the experimenters tried to apply to these higher-order difference 
formulations, generally variants of line relaxation or ADI. In addition, it was generally not easy to 
enforce exact discrete conservation properties in the higher-order formulations, whereas the 
experience with standard low-order differences shows that such conservative formulations tend to 
yield higher precision. It is therefore likely that the gain due to the more precise difference 
formulae was somewhat offset by the loss due to lack of discrete conservativeness, as is also 
confirmed by our results shown below. Giannattasio and Napolitano in a recent paper’ also 
indicate as a possible factor the ineffectiveness of higher-order methods in the presence of 
singularities such as those which affect corners in the classical driven cavity problem. 

In fact, the choice of an AD1 or line relaxation solution algorithm also posed a major 
restriction on the polynomial interpolations judged to be feasible in Rubin and Khosla’s 
presentation. In order for such a method not to require an exceedingly long execution time, the 
parameters of the chosen approximate representation (e.g. spline coefficients) had to be determin- 
able from the inversion of a system having a block-tridiagonal coefficient matrix, and Rubin and 
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Khosla purposely considered only schemes having this property. A characteristic of all the 
higher-order schemes that result as feasible is that they require a larger number of boundary 
conditions than the differential problem. These additional boundary conditions are generally 
determined by using either the differential equations themselves, and possibly their derivatives, or 
extrapolations from the interior points. The choice of additional boundary conditions is delicate 
since they can sometimes make the difference equation system unstable even when the differential 
problem is not, and they might have been the cause of the loss in performance noticed in 
Reference 2 when the convergence rate of the higher-order method was compared with that of the 
standard second-order one. 

Multigrid algorithms have considerably widened the range of feasible discretization choices. In 
particular, the DCMG (deferred correction multigrid) algorithm of Reference 3 turns out to be 
able to solve a variety of higher-order discrete formulations of a given problem in about the same 
computing time required for a low-order formulation, and without placing any special require- 
ment upon the difference equations. 

Using this algorithm we have experimented with a scheme which shares with the one- 
dimensional Runge-Kutta method the property of not requiring any more boundary conditions 
than the differential problem itself does. 

2. THE DCMG ALGORITHM 

The deferred correction multigrid (DCMG) algorithm, for the details of which we shall refer the 
reader to Reference 3, is based on the concept of imperfect Newton iteration. It takes two 
difference formulations of the same problem, one accurate but difficult to cope with and another 
low-order but such that an easy and fast relaxation method is available, and performs an 
approximate Newton iteration process by conceptually solving at each iteration a linear equation 
system which has the derivative matrix of the low-order difference equations as coefficient matrix 
and the sign-changed residuals of the high-order ones as known terms, using for this purpose a 
multigrid4 algorithm based on the available relaxation procedure for the low-order formulation. 
In practice, no derivative matrix need ever be calculated explicitly, because the process is realized 
through the full-approximation storage4 technique by just adding correction terms, similar to 
those that are already applied to the coarser levels of the multigrid structure, to the finest level as 
well, and calculating these terms as the difference of the low-order and high-order residuals, much 
as though the high-order equations represented an even finer multigrid level. 

A peculiar characteristic of the DCMG method is that the high-order equations, in spite of 
being the very ones which are being solved, are used sparingly in the calculation. Indeed, they 
only appear in a single subroutine which calculates their residuals, and this subroutine is executed 
only once per multigrid cycle. It follows that the high-order equations, even if complicated, have 
comparatively little effect on total computation time and that it is very easy to experiment with 
different high-order formulations by simply placing the relevant difference equations in that 
single subroutine. 

A suitable first-order formulation of the Navier-Stokes equations which makes an explicit 
Gauss-Seidel relaxation routine usable as the ‘engine’ of the multigrid cycle was described in 
Reference 3. The DCMG algorithm using this routine was there seen to be as fast as the multigrid 
programmes based on implicit AD1 or line relaxation routines at solving the second-order 
conservative form difference formulation of the $--[ Navier--Stokes equations for the driven 
cavity problem. 

Here we shall describe the use of the DCMG programme to test some new higher-order 
difference formulations of the Navier-Stokes equations. Notice that the only modification that 
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must be operated in order to do so is the replacement of the single routine that calculates the 
residuals of the selected formulation of the equations and boundary conditions. 

3. BLOCK-POLYNOMIAL DISCRETIZATEON 

The fact that the solutions of the differential equation problems of mathematical physics are 
almost everywhere analytic, i.e. admit a Taylor series expansion, implies that a local nth-order 
polynomial interpolation obtained from a discrete representation of the solution is in principle 
able to approximate it with an error which goes down with mesh size h asymptotically as h ” + ’ .  
The choice of a polynomial interpolation suitable for the solution of a differential equation 
problem, however, is anything but unique, and when relatively high-order polynomials are 
considered a wide range of possibilities opens up. 

Existing methods of discretization may be classified into three categories: strictly finite 
difference methods, which use a one-dimensional polynomial fitted to points in a neighbourhood 
of any given mesh point to evaluate derivatives of the solution at that point; spline methods, 
which use a polynomial spline fitted to all the points located along a given co-ordinate line to 
evaluate derivatives of the solution at  each point along that line (see e.g. References 1 and 5) ;  finite 
element methods, which use a multidimensional polynomial fitted to all the points which fall 
inside or on the boundary of a certain portion (finite element) of the calculation region to 
evaluate derivatives at all the points where this is needed inside that same region. (To be sure, 
finite element programmes most often-but not always, see e.g. Reference &use integrated weak 
formulations of the differential equations and evaluate integrals rather than derivatives, but this is 
irrelevant in the present context.) 

Methods of the first and second class require special treatment of the boundaries, since neither 
the additional points necessary for finite difference formulae nor the derivatives of the main 
unknowns which are used as auxiliary variables in spline methods are known there. These added 
unknowns at the boundary must be determined through ‘additional boundary conditions’, which 
may be obtained from extrapolation formulae or by taking derivatives of the differential 
equations themselves. This difficulty is intrinsically related to another, more subtle, one: the 
difference equations turn out to be of a higher order than the differential equations they represent 
(which is why they require additional boundary conditions) and therefore they support, in 
addition to modes which tend, for mesh size going to zero, to the modes of the differential 
problem, other ‘unphysical’ modes which have no correspondent in the original problem. 
Hopefully, these additional modes should be well behaved and fade away under the effect of 
suitably chosen boundary conditions, but if a higher-order scheme which would a priori seem 
workable suddenly turns out numerically unstable in a case where a lower-order scheme is stable, 
the cause may often be identified in an unphysical mode, either intrinsically unstable or made so 
by an unfortunate choice of additional boundary conditions. At least, this identification is 
possible in a linear context. The need for additional boundary conditions and the lack of insight 
about what effects unphysical modes may cause in non-linear problems have contributed to 
creating the slight sense of mistrust that some numerical analysts feel for higher-order difference 
methods. 

The birth of unphysical modes and the consequent necessity of additional boundary conditions 
when higher-order difference schemes are employed may easily be verified in the context of a one- 
dimensional linear problem, for instance the second-order advection4iffusion equation 

f,, - Uf, = 9,  (1) 

where u ( x )  and g(x) are known functions andf i s  the unknown. If a standard finite difference 



494 P. LUCHINI 

approximation using, say, a fourth-order polynomial is adopted forf,, andf,, (1) is transformed 
into a difference equation of the form 

a - 2 , , f n - 2  +u-1 ,nfn-1  + ~ 0 , , ~ + ~ 1 , ~ f n . 1  + a 2 , n f , + 2  =9., (2) 
where, in the case just mentioned and for a uniform discretization with spacing h, 

u ~ , ,  = 4/3h2 + 2un/3h 
and u 2 , ,  = - 1/12h2 - un/12h. 

Equation (2) is a difference equation coupling five adjacent points, and as such is expected to 
have four independent homogeneous solutions. These may be found as Fourier modes for 
constant or frozen coefficients or, more generally, as the solutions that can be obtained by 
arbitrarily assigning four adjacent values o f f  in four linearly independent ways and then 
calculating all the other values in a sequence through (2) by marching forwards and backwards 
from there. In particular, on assuming frozen coefficients (i.e. u, = U, independent of n) and 
f ,  = A", Fourier analysis reduces to solving the eigenvalue equation 

= - 1/12h2 + un/12h, = 4 /3h2  - 2un/3h, a0,, = -5 /2h2 ,  

Uh - 1 + (16 - 8iih)A - 30A2 + (16 + 8Uh)A3 - ( 1  + Uh)A4 = 0 ,  (3) 
the four roots of which correspond to the four modes. In the continuum limit ( h  --* 0) one would 
expect the roots of (3) to tend to those of the continuum mode equation, i.e. the Fourier transform 
of the LHS of ( l ) ,  namely 

(4) 
under the substitution A = eigh. However, it is immediately apparent that (3) has four roots and 
(4) has two, so that a one-to-one correspondence is impossible. In fact, it may easily be computed 
that two roots of (3) tend to unity in the limit for h + 0, and in a higher approximation may be 
seen to approach the values of A which correspond to the two roots of (4), but the other two have 
as limiting values 7 k 448.  It is thus seen that two unphysical modes exist in the difference 
equation which do not have any correspondent in the differential problem. Therefore two 
additional boundary conditions must be imposed which basically have the purpose of selecting a 
solution from which these modes are absent. 

Is there a way to get rid of unphysical modes and additional boundary conditions? An answer 
is contained both in the Runge-Kutta method for ordinary differential equations and in finite 
element methods for partial differential equations. In both cases one and the same higher-order 
polynomial (either in one or more dimensions) is employed over the whole range of mesh points 
that were used to define it, rather than switching to a new polynomial for every mesh point. (In 
the case of the Runge-Kutta method there are additional complications necessary in order to 
make the calculation explicit, but the relevant concept is that a number of evaluations of the 
differential equation are co-operatively used to create a higher-order approximation of a new 
value of the unknown and then the calculation starts afresh from this value without keeping track 
of the intermediate results.) 

A polynomial interpolation scheme suitable for boundary value problems involving second- 
order differential equations, which has the property of permitting higher-order formulations 
without introducing unphysical modes and additional boundary conditions, is shown, in one 
dimension and in the case of a fourth-degree polynomial, in Figure 1. We call this scheme a 'block 
polynomial'. 

As may be seen in the figure, in the standard finite difference scheme a new fourth-order 
polynomial is fitted to every quintuple of points and used only for the central point of the 
quintuple. As a result, every difference equation is coupled to four others, rather than to two as in 
the minimal second-order scheme, and two unphysical modes may arise. 

- p 2  + ipii = 0 ,  
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Figure 1. Mesh points encompassed by successive difference equations E , ,  E,, . . . , E, in three differencing schemes 

In the spline methods additional spline variables are stored at exery mesh point and used to 
define a different polynomial in every interval between two points; the differential equations are 
applied only to the spline variables (which represent the first and second derivatives of the 
unknown) at a single point while difference equations coupling two or three adjacent points are 
derived from a variety of derivative continuity requirements. (Incidentally, it is perhaps unfair to 
compare the spline with the other methods on the basis of an equal mesh size as was done in 
Reference 1; it is a defendable position that they should be compared on the basis of an equal 
number of stored quantities and therefore with a threefold mesh size.) The need for additional 
boundary conditions arises from the missing continuity links at  the edges of the calculation 
interval. 

In the block-polynomial scheme a, say, fourth-degree polynomial is fitted to a block of five 
points and used to evaluate derivatives appearing in the differential equation at the three interior 
points of the block. In this way three difference equations in five unknowns are obtained. 

In order to see how this scheme gets rid of unphysical modes, we may think of eliminating the 
central unknown of each block (for the purpose of the demonstration only, there is no need to 
actually perform these steps in the computer programme) through the corresponding equation, 
say unknown 2 through equation E, with reference to Figure 1, and re-express the remaining 
equations as a vector difference equation of the form 

A-1,nfn-1 +A,,nfn = gn, (5 )  

where A - l , n  and A,,n are 2 x 2 matrices and the vectors fn are formed by the pairs of overlap 
variables (in Figure I : &  andf,;f ,  andf,;f ,  andf,; etc.). The transformation to (5) is possible for 
approximations of any order and not only for the fourth-order polynomial chosen as an example; 
it  is in fact always possible in the block-polynomial scheme to eliminate the internal variables and 
re-express the difference equations in terms of the overlap variables only. 
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Equation (9, being a two-vector difference equation that couples adjacent vectors only, may 
readily be seen to admit exactly two propagation modes. These may be obtained, just as before, 
by arbitrarily choosing an initial vector in two linearly independent ways and working forwards 
and backwards from there, or in the case of constant or frozen coefficients by Fourier analysis. In 
the latter case one must set f,, = 1°F; inserting this position into the homogeneous part of ( 5 )  and 
assuming that A - and A, are independent of n gives the following linear homogeneous system in 
the vector F: 

( A - l  + l A o ) F  = 0 .  (6)  

The compatibility condition of this system is a second-degree equation in 1 which gives the two 
eigenvalues; the solution of (6) then gives the two eigenvectors F. It is thus seen that the number of 
modes is, for approximations of any order, the same as that of the differential problem, and no 
unphysical modes arise. 

Corresponding to the presence of only two modes, the block-polynomial scheme requires only 
two boundary conditions to determine a unique solution. 

It will have been noticed that the block-polynomial scheme looks more or less like a one- 
dimensional version of a finite element scheme, except for the unusual feature of block overlap, 
whose equations are derived by point collocation (an extreme case of weighted integrals). In two 
or more dimensions, however, rather than resorting to general multidimensional polynomials, the 
block-polynomial scheme allows substantially identical formulae to be applied independently 
along each co-ordinate line to evaluate derivatives. Moreover, since the‘ same interpolating 
polynomial is to be used for calculating more than one quantity at more than one point, it is 
reasonably run-time-effective to use a general procedure that calculates Lagrange’s interpolation 
polynomial through Newton’s representation7 to obtain the polynomial’s coefficients and then 
evaluate the required derivatives from the latter, rather than analytically calculating the ex- 
pressions of the derivatives in terms of the function’s values as is usually done in finite difference 
codes. Doing so considerably simplifies the programming and, as an added benefit, allows any- 
order approximations and uniform as well as variable meshes to be handled by a single 
programme. 

As will be seen from the examples, the practical application of the block-polynomial approx- 
imation has been made convenient by the D C M 6  algorithm, which affords a converged solution 
in about the same time for the high-order as for the low-order discretization. The same algorithm 
can also solve the equations obtained from standard higher-order finite difference or spline 
approximations with suitable additional boundary conditions. The block-polynomial scheme, 
however, although sometimes it does not afford the highest order of approximation that the 
symmetry of the equations allows, retains the advantage of being applicable to any-order 
approximations on uniform as well as variable meshes with greater ease of programming. 

4. APPLICATION TO THE NAVIER-STOKES EQUATIONS 

The block-polynomial scheme has been applied to the two-dimensional, steady, incompressible 
Navier-Stokes equations in $-[ form: 

$,, f * y y  - r = 09 

i,, + cyy-  W*,L - *Ay) =o, 
(7) 

(8) 

where I) is the streamfunction, i the vorticity and Re the Reynolds number. Both a non- 
conservative and a conservative formulation have been considered. The non-conservative formu- 
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lation simply involves evaluating the derivatives that appear in (7) and (8) from suitable block- 
polynomial interpolations and then calculating the residuals of the two equations for use in the 
DCMG algorithm. In order to give a conservative formulation, in which a vorticity flux appears 
that is exactly conserved in the discrete equations, (8) was integrated over a four-mesh rectangle 
(not necessarily a square because allowance is made for co-ordinate stretching) surrounding the 
given mesh point of co-ordinates xi, yj and, after transforming the integral by Gauss's formula, 
divided by the area of this rectangle, thus becoming 

The line integrals of (9) were evaluated by fitting a new block polynomial, through the 
Lagrange-Newton procedure, to each of the integrand quantities and integrating the polynomial 
between appropriate bounds. In the limit for mesh spacing going to zero, of course, (9) reduces 
to (8). For finite mesh size, however, they are not exactly equal, and in the conservative discrete 
formulation the residual of (9) was driven to zero rather than that of (8). Exact discrete 
conservation stems from the same value of each line integral being used in the equation 
corresponding to either of the points facing each other across the giveq line. 

In order to complete the description of the block-polynomial method for the Navier-Stokes 
equations we must also discuss the treatment of boundary conditions. The most frequently 
encountered boundary conditions for this problem are velocity conditions, which specify that the 
streamfunction and its normal derivative should take on given values on the boundary. The 
condition on the value of the streamfunction is explicit and gives no problems. The normal 
derivative condition can be imposed to the required order of accuracy in the block-polynomial 
approach by simply equating the wall derivative of the polynomial which interpolates $ in the 
block next to the wall to the required wall velocity u,. Doing so gives an implicit condition on the 
values of the streamfunction used to calculate the interpolation polynomial which properly closes 
the set of difference equations. 

Although the above approach to boundary conditions does work out in practice, it was found 
that a certain improvement in speed of the DCMG algorithm could be obtained by giving a 
slightly different, though analytically equivalent, normal derivative boundary condition. In fact, 
the main assumption underlying the DCMG algorithm is that the high-order difference equations 
whose residuals are to be driven to zero and the low-order equations which are used in the 
multigrid iterative cycle to achieve this aim are different-order discrete formulations of the same 
differential equations and boundary conditions. 

Now, the boundary condition used inside the low-order formulation is the standard Thorn 
equation8 

($nw - $w)/h + ( h / N + w 1 t  - i w  )= l i w ,  (10) 

where $, and $nw are the values of the streamfunction at the wall and next-to-wall points, 
separated by a distance h, $,,, is the second tangent derivative of the streamfunction at the wall, 
which may be obtained from the streamfunction boundary condition, 5, is the unknown wall 
value of vorticity and u, is the value of wall velocity to be imposed. Equation (10) gives an 
approximation of the wall derivative from a second-order Taylor expansion of the streamfunction 
at the wall in which the second derivative is eliminated by using the equation A2 $ = i. In this way 
it lets iw enter the calculation, which is fundamental in the explicit relaxation cycle. 
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Equation (10) more closely represents a linear combination of the boundary condition 
a$/an = u, and the equation A2 $ = [ rather than the boundary condition alone. Of course, such a 
combination is allowed in the differential problem, at least on smooth boundaries, since both the 
boundary condition and the equation must be satisfied anyhow, but again in the discrete problem 
there may be a slight difference. We found that a somewhat faster convergence of the DCMG 
algorithm is obtained if a similar combination is adopted in the high-order as well as in the low- 
order formulation, thus requiring that 

where P;, and P j w  are the first and second derivatives at the wall of the polynomial approx- 
imating $ in the block next to the wail. Equation ( 1 1 )  reduces to (10) for a second-order 
polynomial and represents for a polynomial of any order a comparable-order approximation of a 
linear combination of the two equations aII//an=u, and A2$=5. 

5. RESULTS FOR THE DRIVEN CAVITY PROBLEM 

A programme written according to the above discretization scheme was tried on the well-known 
driven cavity problem, which consists of resolving the steady flow of an incompressible fluid in a 
square cavity, one of whose walls slides tangentially along at constant speed and drives the fluid 
into motion. 

Tables I-IV report the values of three parameters (streamfunction and vorticity at  the cavity 
centre, t,bCc and cCc, and vorticity at the moving wall centre, lMWC) calculated with the standard 
second-order central difference scheme, CD2, and with the third-order block-polynomial scheme, 
BP4 (i.e. the one using a fourth-degree polynomial, which is expected to yield a third-order 
approximation of the second derivatives), using conservative and non-conservative formulations 
at various Reynolds numbers and for several different grid sizes. The last row in each table gives 
the value obtained by extrapolation from the last two results of the BP4 method (in the most 
precise formulation in the case of Re= 100 where several are available), which can be used as a 
substitute of the exact solution for the purpose of estimating errors. 

In particular, Table I contains a comparison of the non-conservative schemes at Re= 100. The 
BP4 scheme turns out better, especially on the value of IMWC, which in all tests appeared to be the 
most prone to errors, but the advantage is lost if the non-conservative BP4 scheme is compared 
with the conservative CD2 scheme (whose results are given in Table 11). This outcome is 
consistent with the conclusions of other authors2 who found that the spline-based non-conservat- 
ive fourth-order schemes are not competitive with the conservative central difference scheme for 

Table I. Driven cavity results for Re= 100 (non-conservative schemes) 

*CC i C C  i M W C  

No. of points CD2 BP4 CD2 BP4 CD2 BP4 

I7 x 17 -0.05248 -0.06858 0.7758 1.2124 8.461 6.670 
29 x 29 - 0.061 66 -0.06735 1.0295 1.1944 7.131 6.370 
41 x41 -0.06415 - 0.06699 1.1025 1.1858 6.822 6.516 
65 x 65 - 0'0655 12 -0.066675 1'14381 1.17775 6.6457 6.5485 
Extrapolated values: - 0066545 -0.066524 1.17416 1.17421 63636 6.5638 

CD2, second-order central difference scheme. 
BP4, fourth-degree block-polynomial scheme. 
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Table 11. Driven cavity results for Re=  100 (conservative schemes) 

*cc icc (MWC 

No. of points CD2 B P4 CD2 BP4 CD2 BP4 

11 x 11 - 0,05896 - 0-05084 0,8827 0.6533 7.641 8.744 
17x 17 - 0.06204 - 0.06094 14)054 1.0102 7.372 7.484 
23 x 23 - 0.06393 - 006610 1.0766 1.1535 7.017 6.503 
29 x 29 - 0.0649 1 -0.066817 1.1 I27 1.1853 6.830 6.389 
41 x41 -0.065670 -0.066870 1.1449 1.18566 6.688 6.4939 
65 x 65 - 0.0662 19 -0.066652 1.16314 1’17824 6’6093 6.5488 
89 x 89 - 0066344 -0.066513 1.16759 1.17411 6.5836 6.5515 
11 x 11s  - 0.0597 1 -0.04237 0.8641 0.4765 7.216 8.348 
17x 17s - 0.0624 1 - 0.06425 1.0267 1.0962 6.851 6.045 
23 x 23s - 0.06493 - 0.06677 1.0918 1.1639 6.713 6.403 
29 x 29s - 0.065 147 -0.066331 1.1226 1.1732 6.654 6.511 
41 x41s - 0.065 8 60 -0.066438 1.1487 1.17526 6.6075 6.5479 
65 x 65s - 0.066280 -0.066492 1.16426 1.17475 6.5806 6.5606 
89 x 89s - 0.066405 -0’066512 1.16892 1.17442 6.5726 6.5626 
Extrapolated values: - 0.066545 -0.066524 1.17416 1.17421 6.5636 6.5638 

s, stretched co-ordinates. 

Table 111. Driven cavity results for Re= 10 (conservative schemes) 

*cc i C C  iMWC 

No. of points CD2 B P4 CD2 BP4 CD2 BP4 

11 x 11  -0.05888 - 0.05964 0.7853 0.7901 5.969 5.948 
17x 17 - 0.05902 - 0.059 17 0.7847 0.7855 5.896 5.815 
23 x 23 - 0-05900 - 0.05902 0.7842 0.7838 5.878 5.847 
29 x 29 -0,058998 -0.058976 0.78397 0.78349 5.8740 5.8588 
41 x41 - 0.05 8 98 9 -0.058959 0.78386 0.78346 5.8717 5.8653 
Extrapolated values: -0.058980 -0.058950 0.78375 0.78344 5.8695 5.8634 

Table IV. Driven cavity results for R e =  lo00 (conservative schemes) 

*cc icc [MWC 

No. of points CD2 BP4 CD2 BP4 CD2 BP4 

89 x 89 -0.1 1351 - 0.1 1640 2-020 1 2.0675 15.429 14.067 
41 x 41s -0.1 1092 -0.11678 1.9840 2.079 1 15.979 13.547 
65 x 65s -0.1 1439 -0.1 1640 2.0335 2.0658 15.178 14.418 
89 x 89s - 0 1  1537 -0.11652 2.049 1 2.0671 14.966 14.638 
Extrapolated values: -0.1 1647 -0.1 1660 2.0666 2.0679 14.728 14.775 

mesh sizes in a similar range. If, however, the conservative BP4 scheme is compared with the 
conservative CD2 scheme, as is done, again for Re = 100, in Table 11, the advantage reappears, in 
connection with both uniform and stretched grids (the results marked ‘s’ refer to a grid obtained 
by applying independently to the x- and y-co-ordinates a ‘stretching’ transformation of the type 
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x =  [1+ tanh(24 - l)/tanh(1)]/2 and choosing a uniform spacing in the 5-co-ordinate, similar to 
what was done in Reference 2 and by many other authors). 

The superiority of the conservative BP4 scheme is confirmed by Tables 111 and IV, which 
report similar data for Re= 10 and 1000 respectively. It will be noticed that at Re= 10 BP4 passes 
CD2 slightly earlier than at Re= 100, whereas at Re= loo0 an advantage only appears for rather 
high values of the number of points in the mesh. (Indeed, results for Re= loo0 with less than 40 
meshes per side are not even reported because BP4 needs at least this number to give any result at 
all.) This trend is, in our opinion, related to the general decrease in precision for a given number of 
points, or increase in number of points necessary for a given precision, which stems from the 
appearance of smaller-and-smaller-scale details in the flow field with increasing Reynolds 
number; the gradual loss of ground of the higher-order with respect to the lower-order schemes 
may be ascribed to this general loss of precision, since it is at very precise calculation that higher- 
order methods are better. 

In order to show that the gain of precision of BP4 is obtained with no substantial cost in 
computation time, Figures 2 4  report the convergence histories of three typical runs, Re= 100 on 
stretched and unstretched (65 x 65)-point grids and Re = 1000 on a stretched (65 x 65)-point grid, 
obtained with the CD2 and BP4 formulations starting from all zero initial values and ending 
when machine-limited accuracy is reached. (The plots are timed in ‘work units’, as is usual for 
multigrid algorithms, one work unit corresponding to one Gauss-Seidel relaxation cycle on the 
finest grid.) In all cases the convergence of BP4 turns out just marginally slower than that of CD2. 
To test the ability of the DCMG algorithm of working also in connection with the standard 
higher-order discrete formulation, we have also run one case using central fourth-order differ- 
ences at all but the next-to-wall points and a non-centred interpolation using a fifth-degree 
polynomial there, so as to obtain a uniformly fourth-order approximation. The convergence 
history of this run, reported in Figure 5, shows no significant difference from the previous cases. 

200  Work U n i t s  0 

Figure 2. Convergence history of the conservative BP4 and CD2 algorithms using a uniform (65 x 65)-point grid at 
Re = 100. Shown is the maximum absolute value of the residual of the streamfunction and vorticity equations as a function 

of time in work units 
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Figure 3. Convergence history of the conservative BP4 and CD2 algorithms using a stretched (65 x 65)-point grid at 
Re= 100 

800 Work Units 0 

Figure 4. Convergence history of the conservative BP4 and CD2 algorithms using a streched (65 x 65)-point grid at 
Re= loo0 

The final values obtained, t+hcc= -0.066612, ice= 1.17727 and rMWC=6.5501, appear to be 
comparable with those given, for the same number of meshes, by BP4. 

It may be concluded that whereas the advantage of conservative over non-conservative 
schemes is considerable, and sufficient to make a second-order scheme comparable in accuracy to 
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200 Work Units 0 

Figure 5 .  Convergence history of the fourth-order centred finite diflerence algorithm using a uniform (65 x 6S)-point grid 
at Re= 100 

a non-conservative third- or fourth-order one, conservative higher-order methods restore the 
balance, and conservative higher-order methods of the block-polynomial type are definitely to be 
preferred to the standard central difference method whenever precise (say, better than a few per 
cent) results are wanted. This statement may be considered to be valid for any Reynolds number 
provided it is remembered that a similar precision requires a much larger number of mesh points 
at a high than it does at a low Reynolds number. 

6. THE CORNER SINGULARITY 

The driven cavity problem has become a standard test case for numerical methods of solving the 
Navier-Stokes equations, because its square geometry fits well a square calculation grid without 
the added difficulties of dealing with a curved boundary, because the only characterizing 
parameter is the Reynolds number defined with the cavity side, the wall velocity and the fluid 
viscosity, because a non-trivial range of different behaviours is obtained with varying Reynolds 
number, but even more because of the great number of data that have been accumulated in time 
(see e.g. Reference 9). There is, however, one defect in this problem as a test case: the two corners 
where the moving wall meets the other, steady, walls give rise to analytical singularities in the 
solution, and since polynomial approximations are certainly unsuitable in the proximity of these 
singular points, a doubt always lurks around that the solution method under test may perform 
less brilliantly than it would if applied to other, non-singular, problems. This doubt is particularly 
well justified in the case of comparing higher- with lower-order difference approximations, since 
the former may be affected more heavily by singularities than the latter, and in fact the presence of 
singularities was one of the causes conjectured by Giannattasio and Napolitano* for the 
unexpectedly low performance of their fourth-order spline method. The results presented in this 
paper too might rightly be thought to be biases because of the presence of these singularities. 

The above doubts can be removed to a large extent if the local behaviour of the solution near 
the singularity is determined analytically and compensated for. The key to doing so is in 
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observing that, just because velocity gradients become infinitely large at these corners, viscous 
effects dominate there, and the local behaviour may therefore be obtained from the Stokes 
equations, i.e. the Stokes-Navier equations with convective terms neglected. The problem is thus 
locally reduced near each corner to the one depicted in Figure 6: solving the biharmonic equation 
for the streamfunction in the space enclosed between two semi-infinite straight lines at a right 
angle with conditions specifying that on one wall both components of velocity are zero and on the 
other the normal velocity is zero and the tangential velocity is unity. 

This problem is an instance of a class which are easily solved by separation of variables in polar 
co-ordinates. The $-c Stokes equations have, as may readily be verified, a family of solutions of 
the form $ = rpfp(U), < = r p -  g p (  8), where r,  8 are polar co-ordinates and &(@, gp(U)  satisfy the 
equations 

f " + P 2 f  =9, g" + ( p  - 2)2g = 0. (12) 

The boundary conditions for the problem of Figure 6 in polar co-ordinates are: 

$(r ,  0)= $(I, n/2)=O, ~ ' $ ~ ( r ,  O)=O, r - ' $ J r ,  n/2)= 1 .  

In order for the last of these conditions to be verified, the exponent p must equal unity. The 
conditions for f are then obtained: 

f ( O ) = f ( x / 2 ) = 0 ,  f '(O)=O, f ' ( n / 2 ) =  1. (13) 

Four independent integrals of (12) for p =  1 are given byf =sin 8, cos 8, 8 sin 8 and 8 cos 8. 
Determining a linear combination of these integrals such that (13) are verified finally gives 

$ = r [ ( n / 2 - 8 )  sin U-(n/2)f?cos O ] / ( x 2 / 4 -  I), 

c=r-'(n sin 8-2 cos U)/(n2/4-  1). 

(14) 

(15) 

As is seen, c is infinite as r-' in the origin, so that its first and second spatial derivatives are of the 

Figure 6. Local description of the corner singularity by the Stokes equations 
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order of r - *  and F 3  respectively and the assumption that convective terms are locally negligible 
with respect to viscous terms in the vorticity-transport equation is self-consistently verified. With 
a suitable choice of the co-ordinate axes, (14) and (1 5 )  represent the local behaviour of the solution 
near both moving corners of the driven cavity. 

Once a local approximation is available, the polynomial interpolation procedures of the 
Section 3 may be applied, in the one or two blocks nearest to each corner, to the difference 
between the current iterate of the sought-after solution and its local approximation, rather than 
to the full solution. Even if the approximation given by (14) and (15) is not sufficient to ensure that 
this difference is analytic (i.e. admits a Taylor series expansion) at the corners, it does ensure that 
the difference is much smaller than the leading term and no longer goes to infinity, and therefore 
should strongly diminish any adverse effects that the presence of singularities may have on the 
overall accuracy of the solution obtained. 

The results of analytically taking account of the corner singularities are shown in Figure 7 and 
Table V. Figure 7 shows the values of tangential velooity at  the moving wall obtained from the 

1.1 

1 

0.5 

-without 

0 1 

Figure 7. Wall velocity profiles obtained with and without comer singularity correction 

Table V. Effectiveness of corner singularity correction (Re= 100) 

*cc 5cc CMWC 

No. of points With Without With Without With Without 

17x 17 -0-06253 - 0.06 1 54 1-0418 1.0091 7.61 1 7.474 
29 x 29 - 0'06704 - 0.06698 1.1850 1.1832 6.391 6.379 
41 x 4 1  -0.06688 - 0'06692 1.1825 1.1838 6.49 1 6.486 
17 x 17s - 0.06704 - 0.06547 1.1364 1.0962 6007 6.045 
29 x 29s -0.06673 - 0.06676 1.1715 1.1732 6.51 1 6.511 
41 x 41s -0'066143 - 0.066649 1.1741 1.1753 6.5483 6.5479 
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polynomial approximation of the streamfunction normal derivative in the solutions obtained 
with and without corner singularity corrections. It will be remembered that the boundary 
condition of ( 1 1 )  does not automatically require that this derivative be unity, so that its 
discrepancy from unity is a measure of the local accuracy of the solution. It may be seen that very 
near the corners the difference is significant, meaning that analytically taking account of the 
singularities has brought an improvement in local accuracy; going away from the corners, 
however, the difference between the two solutions fades rapidly and soon becomes unnoticeable. 
This is confirmed by Table V, which reports the three parameters $cc, iCc and iMwc calculated for 
various Reynolds numbers both with and without corner singularity corrections. 

It may be concluded that corner singularities are not to be considered an important cause of 
overall inaccuracy in numerical solutions of the driven cavity problem as long as attention is not 
focused on flow in the proximity of the corners themselves. If an accurate calculation of just this 
local flow is wanted, analytical correction through (14) and (1 5 )  is an effective technique. 

7. CONCLUSIONS 

A novel discretization scheme has been tested which, although it employs, just as the standard 
finite difference schemes, one-dimensional interpolating polynomials for the purpose of calcu- 
lating derivatives, shares with finite element schemes the property of presenting neither unphys- 
ical modes nor the need for additional boundary conditions. 

Practical use of this scheme has been made possible by the DCMG algorithm of Reference 3, 
which allows a large freedom in the choice of the discretization scheme and, in particular, has 
turned out to be able to find a converged solution of a higher-order formulation of the I+-[ 
Navier-Stokes equations in about the same time that is needed for the standard central difference 
second-order discretization. 

Both a conservative and a non-conservative form of the difference equations have been tested, 
the conservative form giving, just as in the low-order case, consistently better results. Whereas 
comparing the non-conservative BP4 (third-order) scheme with the conservative second-order 
one shows, just as found by other authors for other higher-order schemes,* unexciting per- 
formance for practical mesh sizes, the conservative BP4 scheme proves to be definitely worthwhile 
in all situations except when the mesh size is barely sufficient to yield a meaningful solution for the 
Reynolds number considered. It is to be emphasized that this increased performance is obtained 
at a negligible run-time cost from the DCMG algorithm. 

Finally, an analytical study of the corner singularities which affect the driven cavity problem 
has given a way to describe the flow in these regions more accurately, but has also shown that the 
effect of these singularities is negligible as far as the accuracy of the solution far from the corners is 
concerned. 
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